

Bosung Lee, Ph.D. Director of Solutions Architect, Rescale (bosung@rescale.com)

Contents

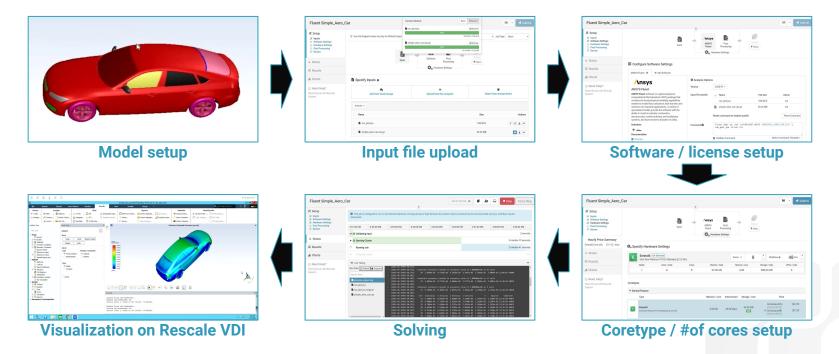
Backgrounds and Objectives Introduction of Rescale HPC Cloud **Simulation cost on HPC Cloud** Simulation cost comparison on Rescale HPC Cloud **Concluding remarks**

Backgrounds and Objectives

Backgrounds and objectives

- Backgrounds
 - Simulation cost (\$) = HPC hardware cost + simulation software license cost, and it depends on the simulation time
 - Limited simulation infrastructure (HW + SW) forces queuing the simulation
 - Simulation software license cost is more expensive than HPC hardware cost
 - HPC Cloud & open source software becomes the alternative for reducing the simulation cost
- Objectives
 - Simulation cost comparison using CFD / AI&ML on Rescale HPC Cloud
 - StarCCM+ & Fluent user cases on Rescale coretypes
 - DrivAer full car model on Fluent, StarCCM+, NextFOAM BARAM on the same coretype
 - <u>ImageAI</u> Object Detection on Rescale GPU coretypes
 - Discuss how to reduce the total cost of simulation

Introduction of Rescale HPC Cloud

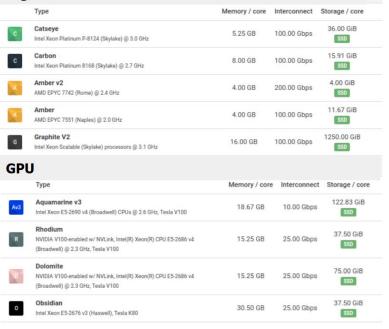

All simulations on single HPC platform

• Fully managed HPC Cloud platform with public cloud hardware and pre-installed simulation software

Simulation workflow of Rescale HPC cloud

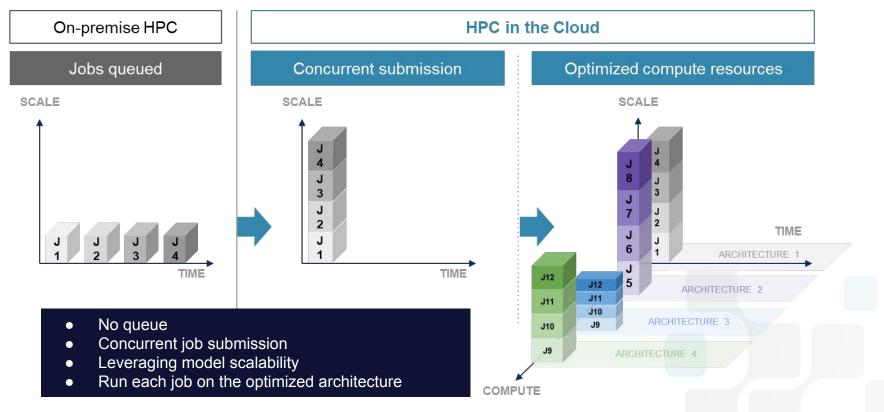
• Upload input files -> Software settings -> Hardware settings -> Submit job

Pre-configured simulation optimized coretypes

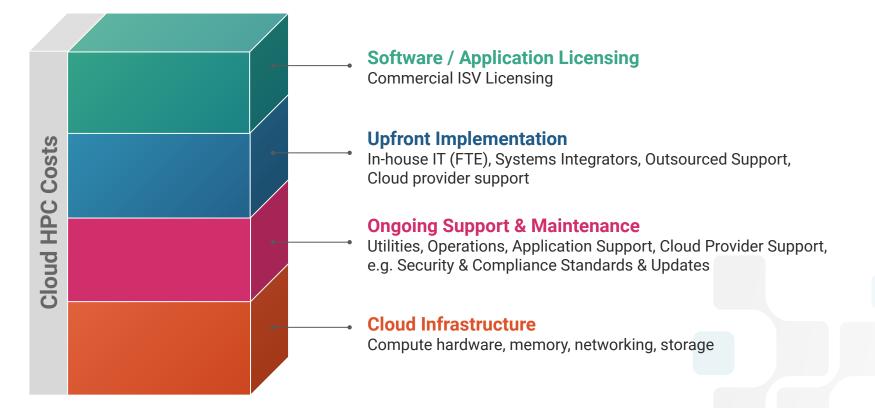

General Purpose

	Туре	Memory / core	Interconnect	Storage / core
E	Emerald Intel Xeon Platinum P-8124 (Skylake) @ 3.0 GHz	4.00 GB	25.00 Gbps	36.00 GiB
ř	Luna 2nd Generation Intel Xeon Scalable Processors (Cascade Lake) @ 3.6 GHz	4.00 GB	25.00 Gbps	36.00 GiB
F	Ferrite Intel Xeon Platinum 8168 (Skylake) @ 2.7 GHz	4.00 GB	10.00 Gbps	16.00 GiB
w	Willow AMD EPYC 7002 series @ 2.3 GHz	4.00 GB	20.00 Gbps	12.00 GiB
s	Spruce AMD EPYC 7452 (Rome) @ 2.4 GHz	8.00 GB	30.00 Gbps	16.00 GiB
s	Sequola AMD EPYC 7452 (Rome) @ 2.4 GHz	14.00 GB	30.00 Gbps	32.00 GiB
R	Ruby Intel Xeon Platinum 8175M (Skylake) @ 2.5 GHz	16.00 GB	25.00 Gbps	75.00 GiB

High Memory


	Туре	Memory / core	Interconnect	Storage / core
R	Ruby Intel Xeon Platinum 8175M (Skylake) @ 2.5 GHz	16.00 GB	25.00 Gbps	75.00 GiB
0	Oak AMD EPYC 7000 series @ 2.5 GHz	16.00 GB	20.00 Gbps	24.00 GiB
м	Moonstone Intel Xeon Platinum 8175M (Skylake) @ 2.5 GHz	16.00 GB	25.00 Gbps	40.00 GiB
0	Dlamond Intel Xeon Platinum 8151 @ 3.4 GHz	16.00 GB	25.00 Gbps	75.00 GiB
T	Topaz Intel Xeon E7-8880 v3 (Haswell) @ 2.3 GHz	30.50 GB	25.00 Gbps	56.25 GiB

High Interconnect


Coretypes are continuously on-boarded

Faster simulation and shorter turnaround time on Rescale

Simulation cost on HPC Cloud

Key cost factors in simulation cost on HPC Cloud

Simulation software licensing cost

- Perpetual license cost depends on number of cores / number of users or concurrent simulation session
 - Ansys : Solver (4 cores) + number of HPC Packs
 - 1 HPC Pack : 8 cores / 2 HPC Packs : 32 cores / 3 HPC Packs : 128 cores
 - StarCCM+ Power Session : no limitation of the number of cores
- On-demand license cost depends on the number of cores and/or license usage time
 - Ansys Elastic Licensing : AEC = 20 (solver) + INT(5 x nCores^{0.57}), 1 AEC = \$1.4 / hour (estimated)
 - StarmCCM+ Power-on-Demand : \$32.5 / hour (estimated)
- Perpetual license cost should be calculated by the license usage time
 - License cost / core-hour = Yearly cost / (24 * 365 hours) / utilization (%) / number of cores
 - \$100,000 / year for 100 cores and HPC utilization is 60 % : \$0.1903 / core-hour
- License cost is mainly dependent on the simulation time
 - As the simulation time decreases, the license cost decreases also

Typical coretype prices on Rescale HPC Cloud

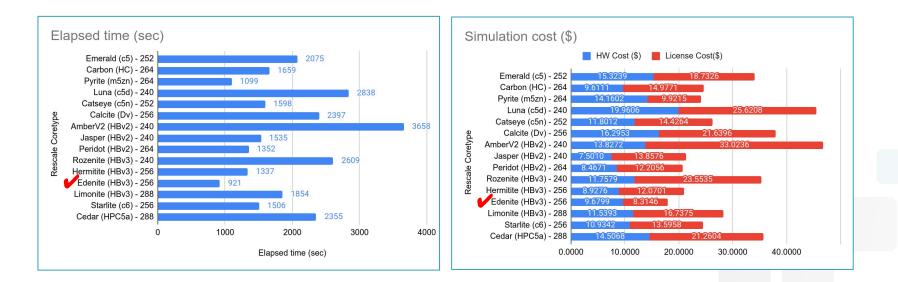
		mem / core	storage / core	Interconnect		ODE (\$	5/hour)	ODP (\$	۶/hour)
Coretype	Spec	(GB)	(GB)	(Gbps)	(Gbps) cores / node		Node price	Total Price	Node price
Emerald	Xeon Platinum P-8124 (Skylake) @ 3.0 GHz	4	36	25	36	0.1055	3.798	0.1473	5.3028
Luna	Xeon SP (Cascade Lake) @ 3.6 GHz	4	36	25	48	0.1055	5.064	0.1473	7.0704
Moonstone	Xeon Platinum 8175M (Skylake) @ 2.5 GHz	16	40	25	48	0.1158	5.5584	0.2083	9.9984
Catseye	Intel Xeon Platinum P-8124 (Skylake) @ 3.0 GHz	5.25	36	100 (EFA)	36	0.1055	3.798	0.1473	5.3028
Pyrite Max	Xeon SP (Cascade Lake) Processors @ 3.8 GHz	8	80	100 (EFA)	24	0.1757	4.2168	0.1757	4.2168
Ferrite	Xeon Platinum 8168 (Skylake) @ 2.7 GHz	4	16	10	36	0.0833	2.9988	0.1361	4.8996
Calcite	Xeon Platinum 8272CL (Cascade Lake) @ 2.5 GHz	8	75	30	32	0.0956	3.0592	0.179	5.728
Chromium	Xeon Platinum 8272CL (Cascade Lake) @ 2.5 GHz	15.75	75	30	32	0.1092	3.4944	0.213	6.816
Carbon	Xeon Platinum 8168 (Skylake) @ 2.7 GHz	8	15.91	100 (IB)	44	0.079	3.476	0.1373	6.0412
AmberV2	AMD EPYC 7742 (Rome) @ 2.4 GHz	4	8	200 (IB)	120	0.0567	6.804	0.0769	9.228
Ammonite	AMD EPYC 7742 (Rome) @ 2.4 GHz	4.3	8.57	200 (IB)	112	0.0579	6.4848	0.0796	8.9152
Apatite	AMD EPYC 7742 (Rome) @ 2.4 GHz	5.45	10.91	200 (IB)	88	0.0627	5.5176	0.0904	7.9552
Jasper	AMD EPYC 7742 (Rome) @ 2.4 GHz	8	16	200 (IB)	60	0.0733	4.398	0.1138	6.828
Peridot	AMD EPYC 7742 (Rome) @ 2.4 GHz	10.91	21.82	200 (IB)	44	0.0854	3.7576	0.1407	6.1908
Rozenite	AMD EPYC 7763 (Milan) @ 2.4 GHz	3.75	16	200 (IB)	120	0.0676	8.112	0.073	8.76
Limonite	AMD EPYC 7763 (Milan) @ 2.4 GHz	4.67	20	200 (IB)	96	0.0778	7.4688	0.0813	7.8048
Hematite	AMD EPYC 7763 (Milan) @ 2.4 GHz	7	30	200 (IB)	64	0.0939	6.0096	0.1019	6.5216
Edenite	AMD EPYC 7763 (Milan) @ 2.4 GHz	14	60	200 (IB)	32	0.1478	4.7296	0.1638	5.2416
Albite	AMD EPYC 7763 (Milan) @ 2.4 GHz	28	120	200 (IB)	16	0.2467	3.9472	0.2875	4.6

Above prices are sample, and these prices are variable on the contract size, date, and regions

Simulation cost comparison on Rescale HPC Cloud

StarCCM+ simulation cost

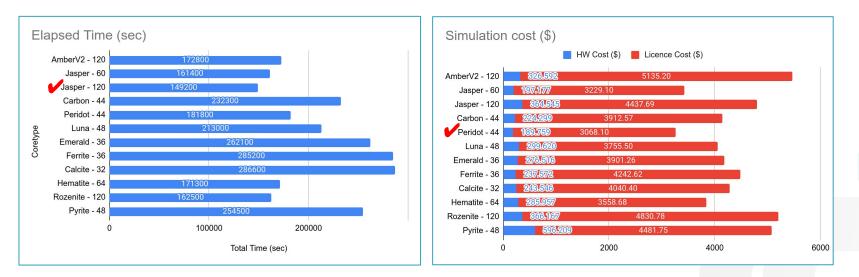
Ansys Fluent simulation cost


DrivAer full car model using Fluent/StarCCM+/BARAM

Cost of the object detection on GPU coretypes

StarCCM+ simulation cost

- Cells : 28M / 15.06.008 Double / Iteration = 200


- Jasper is the minimum hardware cost : \$7.5010
- Edenite shows the minimum total simulation cost (hardware + license cost) : \$17.9945
 - The simulation cost of StarCCM+ PoD depends mainly on the simulation time

Ansys Fluent simulation cost

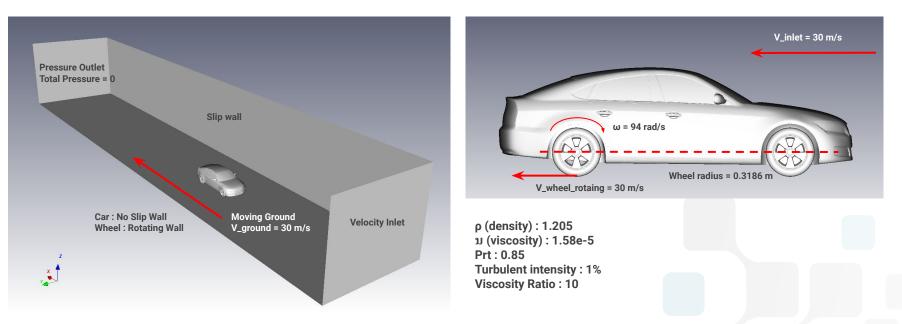
- Unsteady 2D supersonic nozzle (flow time = 1.2 sec)

- Jasper 120 core shows the fastest elapsed time : 149,200 sec
- Peridot 44 cores' hardware cost is the minimum : \$189.759
- The minimum simulation cost is Peridot 44 cores' \$3257.895
 - Ansys Fluent simulation cost depends on the simulation time and the number of cores

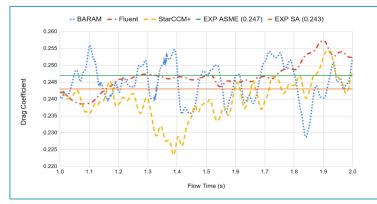
DrivAer full car model

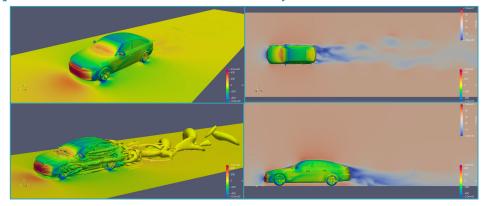
- StarCCM+ / Fluent / BARAM (OpenFOAM based Solver)

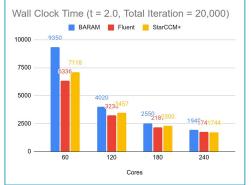
• Simulation conditions


	Version	Solution scheme	Spatial Discretization	Relaxation Factors	Flow Time
BARAM	6.2	simpleNFoam Transient	Momentum : 2nd Turbulent : 1st	Pressure : 0.3 Momentum : 0.3 Turbulence : 0.7	t = 2.0 ∆t = 0.001 sub iter = 10
Fluent	2020R1	SIMPLE Unsteady	Momentum : 2nd Turbulent : 1st	Pressure : 0.3 Momentum : 0.3 Turbulence : 0.7	t = 2.0 ∆t = 0.001 sub iter = 10
StarCCM+	15.06.008 Double	Segregated Flow Implicit Unsteady	Momentum : 2nd Turbulent : 1st	Pressure : 0.3 Momentum : 0.3 Turbulence : 0.7	t = 2.0 ∆t = 0.001 sub iter = 10

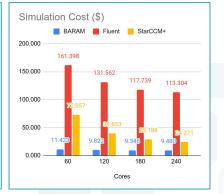
• Hardware specifications


Rescale Coretype	scale Coretype Processor		#of Cores / node Memory		Hourly price / node
Jasper	AMD EPYC 7742 (Rome) @ 2.4 Ghz	60 / 120 / 180 / 240	8 GB /core 488 GB / node	200 Gbps Infiniband	\$4.398


DrivAer full car model - Boundary conditions / Flow conditions


• Same boundary conditions are applied to BARAM / Fluent / StarCCM+

DrivAer full car model - StarCCM+ / Fluent / BARAM (OpenFOAM based Solver)

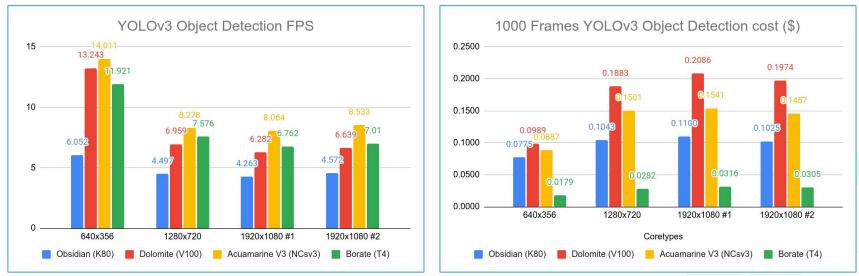


DrivAer full car model

- StarCCM+ / Fluent / BARAM (OpenFOAM based Solver)

- NEXTfoam BARAM, Fluent and StarCCM+ show similar drag coefficients compared to experiments
- Elapsed time in NEXTfoam BARAM is slightly longer than Fluent and StarCCM+
 - Rescale cloud cost depends on the elapsed time
- Simulation license cost is very expensive than cloud hardware cost
 - StarCCM+ Power-session & Power-on-Demand license have no limit in the number of cores
 - Fluent AEC license cost requires the complex cost calculation depends on the problem
- Total simulation cost decreases as the number of cores increases
 - Reduced time using more number of cores can reduce the license cost
- Open source simulation software requires only hardware cost

References of DrivAer full car model


[1] DrivAer Model : <u>https://www.epc.ed.tum.de/en/aer/research-groups/automotive/drivaer/</u>, 2021.11

[2] Drivaer validation case, Wolf Dynamics: <u>http://www.wolfdynamics.com/validations/drivAer/tut_drivaer.pdf</u>, 2021.11
[3] R. Yazdani. Steady and Unsteady Numerical Analysis of the DrivAer Model. Chalmers University of Technology, Master Thesis, 2015

[4] Experimental Comparison of the Aerodynamic Behavior of Fastback and Notchback DrivAer Models. SAE 2014-01-0613.

ImageAI object detection for the real time video stream

- Open source based AI/ML simulation cost depends on the hardware cost
- The frame rate of the detection in the real time video streams is dependent on the GPU&CPU performance
 - The frame rates of AcuamarineV3 (6 CPU with one V100 GPU) is the highest
 - Detection cost in the Borate (2 CPU with one T4 GPU) is the lowest

Performance dashboard and performance optimization

• Performance Dashboard and Optimization help Rescale customers keep HPC spend optimal and aligned to business objectives

rescale - Dashboards	Activity Policies Teams	Financials Security							۰ و	NITHIN+DEMO@RESCALE Solutions
Acme Corp Workspace Portal										
							From:		To:	
Derformenes Deeb	board Acme Corp	/Workenses 1 /	Droiget Comini				March 2021		August 2021	
Performance Dash	iboard Acme Corp		Project Gemeni			~				
Cimulation anon	d by workload for Projec	t Camini fan Marak	they Avenuet 2021				Rescale Performan	ce Analysis		
Sinulation spend	a by workload for Projec	t Germini for March	r tillu August 2021			Learn more at optimize your	oout how Rescale's inte hardware/software co	ligent platform	n can help you arn More	
			Job Duration (hr)	Job Cost (\$)	License Type	Software	На	rdware		
Simcenter STAR-CCM+	\$xxx	SXXX SXXX	6.7	\$397	Bring your own	Job queued 10 times due to software license unavailability.	Edit cost Cha	nge coretype for rovements.	potential cost	Optimize
ANSYS CFX	Succe Succe	Sioni	2.4	\$20	ON Demand	🤣 Software license usage optimal	٥	Current configu	ration optimal	
Abaqus	Sxxx Sxxx	Sumax Sumax	0.9	\$7	Bring your own	Running more jobs concurrently reduce software costs	may Cha imp	nge coretype for rovements.	potential cost	Optimize
Ansys Fluent	SXXXX SXXXX SXXXX		14.8	\$3	Bring your own	input cost for analysis	•	Current configu	ration optimal	
OpenFOAM+	SXXX SXXX		0.2	\$1	Open Source	Software license usage optimal	٥	Current configu	ration optimal	
s	0 \$1000	\$2000 \$3000	\$4000							
	Emerald Carbon Hematite Jasper	Ferrite Rozenite	Cedar Amber V2							
			tring your own" license without user i	nput.						
You can compare coretyp	be properties using the Coretype Exp	Norer								

- Get better visibility into the highest spend workloads
- Gain insights on how to optimize the spend by selecting the right infrastructure
 - License type used for the software (either Bring Your Own or On-Demand)
 - Software licensing insights depends on licensing model
 - Hardware insights

Concluding Remarks

Concluding Remarks

- Simulation cost (\$) is composed of the HPC hardware cost, simulation software license cost
 - Simulation software license cost is much higher than HPC hardware cost
 - By selecting the optimized hardware, the simulation cost can be optimized
 - As the simulation time decreases, the license cost decreases also
- According to the license model, the simulation cost is variable
 - StarCCM+ Power-session & Power-on-Demand license have no limitation in the number of cores
 - Ansys license requires the complex calculation depends on the number of cores and simulation time
 - Proper coretype selection for each simulation software should be required
- Open source simulation software requires only hardware cost
- Simulation cost optimization possible through the flexible coretype selection on Rescale HPC cloud