

Simulation cost analysis of NEXTfoam BARAM on Rescale HPC Cloud

Bosung Lee, Ph.D. Director of Solutions Architect, Rescale (bosung@rescale.com)

Contents

Introduction

Analysis model

Simulation conditions

Results

Concluding remarks

Introduction

- Backgrounds
 - Simulation cost (\$) = HPC hardware cost + simulation software license cost + simulation time
 - Limited simulation infrastructure (HW + SW) forces queuing the simulation
 - Simulation software license cost is more expensive than hardware cost
 - HPC Cloud & open-source software becomes the alternative for reducing the simulation cost
- Objectives
 - Simulation cost analysis using NEXTfoam BARAM, Ansys Fluent and Siemens StarCCM+
 - Simulation accuracy comparison using the <u>DrivAer full car model</u>
 - Cloud hardware cost on <u>Rescale HPC Cloud</u>
 - Simulation software license cost
 - Simulation time
 - Discuss about how to reduce the total cost of simulation

Rescale HPC cloud

• Fully managed HPC Cloud platform with public cloud hardware and pre-installed simulation software

NEXTfoam BARAM on Rescale HPC cloud

- GUI capable OpenFOAM®-based CFD solver released by NEXTfoam under the GNU GPL license
- GUI support using web-browser without installation on the local workstation / on-prem HPC

Analysis model

- Fastback DrivAer Model
 - The new generic full car model for external flow to close the gap between the strongly simplified models and the highly complex production cars

- Simulation conditions
 - Fastback / smooth underbody / with mirror / rotating wheel / moving ground
 - Full 3D (not half) unsteady flow with $k-\omega$ SST turbulence model
 - Free-stream velocity : 30 m/s
 - Compared with the experimental results

Domain dimensions and mesh generation

- Base mesh was generated using BARAM-Snappy (BARAM version of SnappyHexMesh)
 - OpenFOAM base mesh was converted to Fluent mesh (.msh) using 'foamMeshToFluent'
 - Fluent mesh was imported to StarCCM+

Boundary conditions

• Same boundary conditions are applied to BARAM / Fluent / StarCCM+

Simulation conditions

• Simulation conditions

	Version	Solution scheme	Spatial Discretization	Relaxation Factors	Flow Time
BARAM	6.2	simpleNFoam Transient	Momentum : 2nd Turbulent : 1st	Pressure : 0.3 Momentum : 0.3 Turbulence : 0.7	t = 2.0 ∆t = 0.001 sub iter = 10
Fluent	2020R1	SIMPLE Unsteady	Momentum : 2nd Turbulent : 1st	Pressure : 0.3 Momentum : 0.3 Turbulence : 0.7	t = 2.0 ∆t = 0.001 sub iter = 10
StarCCM+	15.06.008 Double	Segregated Flow Implicit Unsteady	Momentum : 2nd Turbulent : 1st	Pressure : 0.3 Momentum : 0.3 Turbulence : 0.7	t = 2.0 ∆t = 0.001 sub iter = 10

• Hardware specifications

Rescale Coretype	Processor	#of Cores / node	Memory	Interconnect	Hourly price / node
Jasper	AMD EPYC 7742 (Rome) @ 2.4 Ghz	60	8 GB /core 488 GB / node	200 Gbps Infiniband	\$4.932

Results

StarCCM+ PoD license cost = \$32.5 / hour (estimated) Fluent required AEC = {20 + INT(5 x nCores^{0.57})}, Fluent AEC cost = \$1.4 / AEC (estimated)

Concluding remarks

- NEXTfoam BARAM, Fluent and StarCCM+ show similar drag coefficients compared to experiments
- Elapsed time in NEXTfoam BARAM is slightly longer than Fluent and StarCCM+
 - Rescale cloud cost depends on the elapsed time
- Simulation license cost is very expensive than cloud hardware cost
 - StarCCM+ Power-session & Power-on-Demand license have no limit in the number of cores
 - Fluent AEC license cost requires the complex cost calculation depends on the problem
- Total simulation cost decreases as the number of cores increases
 - Reduced time using more number of cores can reduce the license cost
- Open source simulation software requires only hardware cost

NEXTfoam BARAM on Rescale HPC cloud shows the best price / performance

Reference

[1] DrivAer Model: https://www.epc.ed.tum.de/en/aer/research-groups/automotive/drivaer/, 2021.11

[2] Drivaer validation case, Wolf Dynamics: http://www.wolfdynamics.com/validations/drivAer/tut_drivaer.pdf, 2021.11

[3] R. Yazdani. Steady and Unsteady Numerical Analysis of the DrivAer Model. Chalmers University of Technology, Master Thesis, 2015

[4] Experimental Comparison of the Aerodynamic Behavior of Fastback and Notchback DrivAer Models. SAE 2014-01-0613.

